Who We Are

Council Members

Officers

Image:Dr Keith Carne

Dr Keith Carne

Treasurer


Department of Pure Maths and Mathematical Statistics and First Bursar, King's College Cambridge

Image:Professor Maciej Dunajski

Professor Maciej Dunajski

Mathematical Secretary


Professor of Mathematical Physics, Department of Applied Mathematics and Theoretical Physics, Clare College, University of Cambridge

Image:Dr James Fraser

Dr James Fraser

Biological Secretary


Senior Lecturer, Department of Physiology Development and Neuroscience, University of Cambridge

Image:Professor Joan Lasenby

Professor Joan Lasenby

Physical Secretary


Professor of Image and Signal Processing, Department of Engineering, University of Cambridge.

Ordinary Members

Office Staff

Image:Beverley Larner

Beverley Larner

Executive Secretary


Image:Sara Lees

Sara Lees

Editorial Assistant, Biological Reviews


Image:Janet Moore

Janet Moore

Editorial Assistant, Mathematical Proceedings


Image:Wendy Cattell

Wendy Cattell

PA to Executive Secretary


Image:Graham CopeKoga

Graham CopeKoga

Communications Officer


Publications

Discover our Journals & Books

From Darwin’s paper on evolution to the development of stem cell research, publications from the Society continue to shape the scientific landscape.

Membership

Join the Cambridge Philosophical Society

Become a Fellow of the Society and enjoy the benefits that membership brings. Membership costs £20 per year.

Join today

Upcoming Events

Show All

26

02

The quest for the first stars and first black holes with the James Webb Space Telescope

Professor Roberto Maiolino

  • 18:00 - 19:00 Bristol-Myers Squibb Lecture Theatre

Finding and understanding the nature of the first stars at cosmic dawn is one of the most important and most ambitious goals for modern astrophysics. The first populations of stars produced the first chemical elements heavier than helium and formed the first, small protogalaxies, which then evolved, across the cosmic epoch, into the large and mature galaxies, such as the Milky Way and those in our local neighbour. Equally important and equally challenging is the search, in the early Universe, of the seeds of the first population of black holes, which later evolved in the supermassive black holes at the centre of galaxies, with masses even exceeding a billion times the mass of the Sun. When matter accretes on such supermassive black holes it can become so luminous to vastly outshine the light emitted by all stars in their host galaxy.

Since its launch, about two years ago, the James Webb Space Telescope has been revolutionizing this area of research. Its sensitivity in detecting infrared light from the remotest parts of the Universe is orders of magnitude higher than any previous observatory, an historical leap in astronomy and, more broadly, in science. I will presents some of the first, extraordinary discoveries from the Webb telescope, which have resulted in several unexpected findings. I will also discuss the new puzzles and areas of investigation that have been opened by Webb’s observations, how these challenge theoretical models, and the prospects of further progress in the coming years.

View Details

06

03

Every breath you take and every move you make - understanding cellular oxygen sensing mechanisms

Professor Sir Peter Ratcliffe FRS

  • 18:00 - 19:00 Bristol-Myers Squibb Lecture Theatre

The maintenance of oxygen homeostasis is a key physiological challenge, inadequate oxygen (hypoxia) being a major component of most human diseases. The lecture will trace insights into human oxygen homeostasis from the founding work of William Harvey on the circulation of the blood to the molecular elucidation of a system of oxygen sensing that functions to measure oxygen levels in cells and control adaptive responses to hypoxia. The lecture will outline how the oxygen sensitive signal is generated by a set of ‘oxygen splitting’ enzymes that modify a transcription factor (HIF) to signal for its degradation (and hence inactivation).  It will attempt to illustrate and rationalise the unexpected in biological discovery and discuss the interface of discovery science with the development of medical therapeutics.

View Details